Woodpecker (Picidae) diversity in borer- *Hoplocerambyx spinicornis* infested sal *Shorea robusta* forests of Dehradun valley, lower western Himalayas

Arun P. Singh

Arun P. Singh, Entomology Division, P.O. New Forest, Forest Research Institute (ICFRE), Dehradun 248006, Uttarakhand, India.

Email: ranotaps@gmail.com; singhap@icfre.org

Manuscript received on 14 August 2009.

Introduction

The sal heartwood borer *Hoplocerambyx spinicornis* Newman (Coleoptera: Cerambycidae) [sal borer; **Fig. 1**] is known to cause considerable mortality of sal *Shorea robusta* trees all over the latter’s distributional range in India. Explosive outbreaks of this insect, killing millions of trees over vast stretches of forests (**Fig. 2**), have been reported from time to time, from as early as 1897 (Stebbing 1899), to as recently as 2001 (Bhandari & Rawat 2001); from Assam 1906–1961; West Bengal 1931–1934; Bihar 1897; Madhya Pradesh 1905, 1923–1928, 1959–1963; Uttar Pradesh: Kalagarh (now in Uttarakhand) 1924–1925, 1934–1937; Himachal Pradesh 1948–1954 (Roonwal 1977). The sal borer generally attacks trees that are dead or practically dead, i.e., felled, victims of windfall, struck by lightning or broken by storms, or damaged, or attacked by root fungus. Healthy standing trees are not attacked unless there is an epidemic of the borers, and the beetles are so numerous that the dead trees are insufficient for them (Beeson 1941). Sal heartwood borer is today the major factor responsible for the decline of sal, besides other biotic, and abiotic factors such as intensive grazing, lopping, felling, etc., which hinder its natural regeneration.

Relationship between woodpeckers and Cerambycidae beetles

Woodpeckers (Picidae) feed on adults, grubs, and pupae of wood-boring beetles that infest tree trunks and branches in forest habitat (Ali & Ripley 1987). A notable influx of woodpeckers accompanies an epidemic of borers in natural forests (Beeson 1941; Dennis 1967; Stoddard 1969; Jackson 1988, 2002). Woodpeckers are often cited as the most important predators of wood-boring cerambycid larvae (Brooks 1923; Linsley 1961; Solomon 1968, 1972, 1974; Jackson 2002). It is possible that larvae near ground level, and near branch points within the canopy, are less vulnerable to woodpecker predation than those in a clearly exposed small-diameter tree trunk. Similarly, adult beetles on the exposed trunk may be more vulnerable to woodpecker predation while ovipositing, which may take up to half an hour or more. Apart from small-sized beetles, and vegetable matter such as berries and seeds, cerambycid grubs form the main diet (38%–46%) of large-sized woodpeckers like the Ivory-billed Woodpecker *Campephilus principalis* in North America (Jackson 2002). Predatory woodpeckers, e.g., Three-toed Woodpecker *Picoides tridactylus*, are also known to play a significant role in regulating bark and longhorn beetle populations in coniferous forest landscapes in Europe (Fayt et al. 2003). A positive correlation has been established between the abundance of longhorn beetle larvae, and the brood-size of woodpeckers—the Three-toed Woodpecker nestlings’ main

Fig. 1. Specimen of a male sal heartwood borer *Hoplocerambyx spinicornis* collected from Dehradun valley.

Fig. 2. Extent of sal mortality caused by the sal borer.
Singh: Woodpeckers & sal borer

Indian Birds Vol. 6 No. 1 (Publ. 25th June 2010) 3

food (Fayt et al. 2003). Three-toed Woodpecker is also known to show the greatest numerical response to beetle prey density, with population densities increasing up to 44.8-fold during outbreaks, relative to those supported at endemic beetle levels (Fayt et al. 2003). Some species of large-sized woodpeckers, like Black-backed Woodpecker P. arcticus, which is extremely specialized in its foraging niche, feed exclusively by excavating larval wood-boring beetles during outbreaks in dying conifers for only 2–3 years after forest fires in Alaska (Murphy & Lehnhausen 1998).

Thus, woodpeckers are important bio-agents that feed on cerambycid borer larvae and pupae in natural forests, on old aged trees, and help in suppressing population of this pest to some extent.

However, extensive study is required to establish a similar relationship between the sal heartwood borer and woodpeckers in the tropical moist deciduous sal forests of the lower western Himalayas. With this aim, the present study was carried out to evaluate the intensity of sal heartwood borer infestation in sal stands and examine the relationship of borer infestation with abundance and diversity of woodpeckers.

Study area

Dehradun valley, which covers an area of c. 2,000 km² and lies in the lower western Himalaya in the state of Uttarakhand, was selected as the study area to work on this problem. About 51–58% land area in the valley was under tropical moist deciduous sal forests (Figs. 23, 24) (FSI 1995). These forests have a history of sal borer outbreaks all over the valley. Here, during 1916–1924 an outbreak at Thano range covered 18 km², and over 80,000 trees perished. During 1952–1953, again at Thano, 8,475 badly infested trees had to be felled. In 1958–1960 an outbreak at Timli range destroyed 12,860 trees. In 1961 in Lachhiwala range a ‘light’ outbreak was reported. Then in 1965, once again in Thano range, 4.8 km² of forest was affected with 2,379 being trees attacked, followed by 21% infestation of trees by the borer during 1976–1978 (Roonwal 1977; Singh & Mishra 1986). Recently, during 2000–2002, large-scale mortality of trees has occurred again, due to sal borer attacks in the valley (pers. obs. of author).

Material & methods

Selection of study sites

Topographic maps and satellite imagery (IRS-IC 1998) data of the study area, depicting the extent of sal forest cover in Dehradun valley, were procured from Forest Survey of India (FSI) and Survey of India, Dehradun for selection of study sites (Fig. 3). Areas of sal forest covering more than 4 km², and with a canopy cover > 50%, were identified as potential sites for study. Fifteen forest ranges with large sal forest tracts were thus identified as suitable for this study. Based on the ground surveys nine sal forest sites (eight in reserve forest area and one inside Rajaji National Park) distributed all over the valley were marked and identified for sampling (Fig. 3; Table 1). Field surveys were then carried out for collecting

Fig. 3. Dehradun valley: study area, the extent of sal forest cover and location of study sites as mentioned in the text.
baseline habitat data for these study sites namely, percentage of borer-infested sal trees; tree girth at breast height (GBH); density per hectare, and tree species composition of sites. These were determined by laying down 16 vegetation plots (quadrates of 10×10m) in each site. Total numbers of sal trees were then counted in each plot, and were separated into borer-infested (including dead ones) and un-infested sal trees, to calculate percentage of borer infestation.

Woodpecker surveys

Woodpecker surveys were carried out at each site visually, using binoculars and field guides. At each site, a transect of one kilometer was marked through the forest, and walked through the vegetation plots for 60 min., at a stretch, between 0800 and 1700 hrs for sampling occurrence of woodpecker species. All woodpecker species up to 25 m on either side of transects, were identified and their numbers recorded. Nine sampling surveys were carried out at each site from May 2004 to February 2006, and February 2007, covering all the seasons.

Woodpeckers were identified with the help of various field guides (Ali & Ripley 1987; Grimmett et al. 1998; Kazmierczak 2000; Rasmussen & Anderton 2005). Plants in vegetation plots were identified with the help of Kanjilal (1969), and the plant taxonomist at the Herbarium, Botany Division at FRI, Dehradun.

Analysis

Relative abundance of woodpeckers, computed as average of their abundances across samples for each site, was correlated with percentage of borer-infested sal trees using Pearson’s correlation coefficient. I also did regression analysis to model the relationship between woodpecker species and sal-borer occurrence. Species diversity of woodpeckers (H') was calculated from the Shannon Index as follows (where p_i is the proportion of the ith species in the sample):

$$H' = - \sum p_i \log p_i$$

Shannon Index is essentially a combined measure of both species richness (i.e., number of species) and evenness of abundances (i.e., how equitably all the species are distributed in terms of their population) in a sample. In other words, species diversity will be the highest in an assemblage of woodpeckers with a large number of species and with all the species occurring in high yet equal numbers.

The structure of woodpecker assemblages and their habitat selection were studied by Principal Components Analysis (PCA), which seeks to reduce a large number of species or ecological factors into a few meaningful dimensions for easy interpretation. I first generated a ‘site plot’ where the sampling sites were

<table>
<thead>
<tr>
<th>Sl. no.</th>
<th>Site/Range</th>
<th>Vegetation</th>
<th>Percentage of borer infested sal trees</th>
<th>Percentage of trees with GBH > 100cm</th>
<th>Dominant GBH class (cm)</th>
<th>Shannon Diversity Index of Woodpeckers*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kansrao (Rajaji NP)</td>
<td>Pure sal and mixed patches with marshy vegetation having Trewia nudiflora; Syzygium cumini</td>
<td>Low (1.7)</td>
<td>72</td>
<td>101-125</td>
<td>0.737</td>
</tr>
<tr>
<td>2</td>
<td>Karvapani RF</td>
<td>Mainly mixed sal patches and marshy vegetation having Sapium somniferum; S. cumini; T. nudiflora</td>
<td>High (20.3)</td>
<td>56</td>
<td>76-100</td>
<td>0.823</td>
</tr>
<tr>
<td>3</td>
<td>Timli RF</td>
<td>Mainly sal dominant, without water</td>
<td>Low (2.7)</td>
<td>45</td>
<td>51-75</td>
<td>0.690</td>
</tr>
<tr>
<td>4</td>
<td>Thano RF</td>
<td>Mainly sal dominant, without water</td>
<td>High (36.6)</td>
<td>59</td>
<td>101-105</td>
<td>0.919</td>
</tr>
<tr>
<td>5</td>
<td>Kalusidh-Lacchiwala RF</td>
<td>Mixed patches with marshy vegetation having T. nudiflora.</td>
<td>Low (0.5)</td>
<td>46</td>
<td>76-100</td>
<td>0.749</td>
</tr>
<tr>
<td>6</td>
<td>Chowki RF</td>
<td>Pure sal with mixed vegetation in nullahs and water and S. somniferum</td>
<td>Moderate (15.7)</td>
<td>36</td>
<td>51-75</td>
<td>0.799</td>
</tr>
<tr>
<td>7</td>
<td>Rikhauli RF</td>
<td>Pure hill sal, without water</td>
<td>Low (0.8)</td>
<td>9</td>
<td>25-50</td>
<td>0.345</td>
</tr>
<tr>
<td>8</td>
<td>Jhajra RF</td>
<td>Pure and mixed patches, without water.</td>
<td>High (22.5)</td>
<td>58</td>
<td>101-125</td>
<td>0.761</td>
</tr>
<tr>
<td>9</td>
<td>Chandpur RF</td>
<td>Mainly pure sal, water in a pool, with S. cumini, and S. somniferum</td>
<td>High (24.7) Old infestation</td>
<td>47</td>
<td>101-125</td>
<td>0.647</td>
</tr>
</tbody>
</table>

NP=National Park; RF=Reserve Forest; * Shannon Diversity Index of woodpeckers—as determined in this study.
grouped according to similarity of their woodpecker species composition. Then, a ‘species plot’ was drawn in which all the woodpecker species were clustered on the basis of similarity of their distribution in a two-dimensional space as defined by the sampling sites in PCA. All the statistical analyses were done using the software SPSS v.11.00.

Results & discussion
Dehradun has a rich diversity of woodpeckers, as 17 species are known to exist in the district, both in the hills, and valley/plains (Singh 2000, 2002). However, except for four species, namely, Himalayan Dendrocopos himalayensis, Rufous-bellied D. hyperythrus, and Scaly-bellied Picus squamatus Woodpeckers, which are strictly hill species, and Brown-capped Pygmy Woodpecker D. nanus, which is mainly found in dry deciduous habitat in the Indian plains, the remaining 13 spp., known from the area were observed in the sal forests of Dehradun valley (below 1,000 m), the lower western Himalaya, during the survey.

Nine sites were sampled and their vegetation characteristics are given in Table 1.

Seasonality of woodpeckers in sal forests
It was observed that the woodpeckers, in general, were most abundant during winter (from December to February) in sal forests of Dehradun valley (Fig. 5).

Relative abundance
Systematic sampling of woodpeckers (Fig. 9) revealed that Grey-headed Woodpecker Picus canus (Fig. 4) was the most abundant species in the entire study area followed by Fulvous-breasted Dendrocopos macei (Fig. 10) and Grey-capped Pygmy D. canicapillus (Fig. 15) Woodpeckers. The least common species were Yellow-crowned D. mahrattensis (Fig. 8), Brown-fronted D. auriceps (Fig. 21), and Streak-throated Woodpeckers P. xanthopygaeus (Fig. 6).

Relationship between individual species abundance & borer infestation
Across sites, the relative abundance of woodpeckers was found to be greatest in Kansrao, followed by Thano, Jhajra, and Karvapani.

Fig. 6. Streak-throated Woodpecker Picus xanthopygaeus.
PCA was carried out for all the sites (barring Chandpur) with respect to relative abundance of 13 species of woodpeckers. Ordination plots were generated for grouping of both, woodpecker species, and sampling sites, based on the two most important components extracted. In the analysis, the first component explained 51.6% of variation in the relative abundance of woodpeckers, while the second component contributed to 21.2%

The last three sites also housed the highest proportion of borer-infested sal trees (Fig. 12). However, abundances of only two species namely, Greater Yellownape Picus flavinucha (Fig. 13), and Lesser Yellownape P. chlorolophus (Figs 14, 16) were found to be positively related to sal-borer frequency.

Woodpecker communities in sal forests of Dehradun valley:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Species</th>
<th>Residential status</th>
<th>Month of maximum abundance in sal forests</th>
<th>Preference for forest habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Greater Yellownape Picus flavinucha</td>
<td>Resident</td>
<td>December</td>
<td>Sal dominant</td>
</tr>
<tr>
<td>2</td>
<td>Lesser Yellownape P. chlorolophus</td>
<td>Resident</td>
<td>August</td>
<td>Sal dominant and mixed patches</td>
</tr>
<tr>
<td>3</td>
<td>Grey-headed Woodpecker P. canus</td>
<td>Resident</td>
<td>December</td>
<td>Sal dominant</td>
</tr>
<tr>
<td>4</td>
<td>Streak-throated Woodpecker P. xanthopygaeus</td>
<td>Resident</td>
<td>January</td>
<td>Mixed patches with sal</td>
</tr>
<tr>
<td>5</td>
<td>Greater Flameback Chrysocolaptes lucidus</td>
<td>Resident</td>
<td>December; February</td>
<td>Mixed patches with sal</td>
</tr>
<tr>
<td>6</td>
<td>Himalayan Flameback Dinopium shorii</td>
<td>Resident</td>
<td>December; February</td>
<td>Sal dominant</td>
</tr>
<tr>
<td>7</td>
<td>Black-rumped Flameback D. benghalense</td>
<td>Resident</td>
<td>September</td>
<td>Mainly mixed patches</td>
</tr>
<tr>
<td>8</td>
<td>Fulvous-breasted Woodpecker Dendrocopos macei</td>
<td>Resident</td>
<td>October-December</td>
<td>Sal dominant and mixed patches</td>
</tr>
<tr>
<td>9</td>
<td>Grey-capped Pygmy Woodpecker D. canicapillus</td>
<td>Resident</td>
<td>October-February</td>
<td>Mixed patches with sal</td>
</tr>
<tr>
<td>10</td>
<td>Brown-fronted Woodpecker D. auriceps</td>
<td>Winter Migrant-Vagrant Vagrant</td>
<td>February</td>
<td>Sal dominant</td>
</tr>
<tr>
<td>11</td>
<td>Yellow-crowned Woodpecker D. mahattensis</td>
<td>Uncommon resident</td>
<td>November</td>
<td>Mixed patches (mainly non-sal)</td>
</tr>
<tr>
<td>12</td>
<td>Rufous Woodpecker Micropterus brahyurus</td>
<td>Resident</td>
<td>May</td>
<td>Mixed patches with sal</td>
</tr>
<tr>
<td>13</td>
<td>Speckled Piculet Picumnus innominatus</td>
<td>Resident</td>
<td>February</td>
<td>Mixed patches with sal</td>
</tr>
</tbody>
</table>

Fig. 7. Black-rumped Flameback Dinopium benghalense.

Fig. 8. Yellow-crowned Woodpecker Dendrocopos mahrattensis.

The lower western Himalayas

Woodpeckers & sal borer
% of variation.

First ordination plot sought to group sampling sites on the basis of their woodpecker communities (Fig. 18); in particular, component 1 was represented by Greater Yellownape and component 2 the Lesser Yellownape. In this space, two prominent clusters of sites were obtained: i) Karvapani, Jhajra, and Chowki and ii) Kalusidh, Thano, Kansrao, and Timli. Examining the geographical location of these sites, it became clear that spatial proximity had also contributed to much of their similarity in woodpecker composition (Fig. 3). It is also interesting to note that Kalusidh, Kansrao and Timli in the second cluster had very low borer infestation rates.

In the second ordination plot, woodpecker species were grouped based on their habitat selection as inferred from their distribution across sites. In the analysis, the first component explained 51.8% of variation in the relative abundance of woodpeckers, while the second component contributed to 23.7% of variation, with component 1 represented by Karvapani, and component 2 by Chowki. As evident from the plot (Fig. 19), Himalayan and Greater Flamebacks shared similar habitat requirements. Similarly, Greater Yellownape, Rufous Woodpecker, and Streak-throated Woodpecker showed greater similarity in their habitat occupancy.

It is, therefore, clear that habitat selection of woodpeckers in Doon valley is not heavily influenced by rate of sal-borer infestation, though both the yellownapes do seem to show marked proclivity to borer-infested forest patches.

Amongst the 11 resident species in TMDSF at least six showed preference to sal dominant patches in TMDSF (Table 2).

Conclusion

Out of 13 species of woodpeckers sampled in tropical moist deciduous sal forests of Dehradun valley, the abundant species were, Grey-headed Woodpecker, Fulvous-breasted Woodpecker, Grey-capped Pygmy Woodpecker, Greater Flameback, Lesser...
At species level only two species, Greater Yellownape, *Picus flavinucha* and Lesser Yellownape, *Picus chlorolophus* showed significant increase in borer infested stands, suggesting that these species could be important predators of the sal heartwood borer. Amongst resident species of woodpeckers, abundance of Greater Yellownape, Lesser Yellownape, Grey-headed Woodpecker, Himalayan Flameback, Fulvous-breasted Woodpecker were more in pure sal stands as compared to mixed forest stands. On the other hand, abundance of Streak-throated Woodpecker, Rufous Woodpecker, Grey-capped Pygmy Woodpecker, Greater and Black-rumped Flameback had more abundance in mixed stands.

The remaining two species are vagrant records. The Yellow-crowned Woodpecker was rare in TMDSF of Dehradun valley, as it prefers ‘dry deciduous’ vegetation lying south of the valley. On the other hand, Brown-fronted Woodpecker occurs mainly in the higher hills (above 1,400m), but was also observed once in TMDSF of the valley as it descended down during extreme winter conditions in sal forests.

Highest seasonal abundance of woodpeckers was recorded during winter (December-February) in sal forests. Species diversity of woodpeckers was greater in sites with high borer infestation (> 20% borer infested trees) as compared to stands with low infestation (< 3% infestation) indicating that borer infested sites attract greater diversity of woodpeckers. Thus, woodpeckers in general play a significant role in predating on the borer thereby minimizing the borer infestation. This is in consistency with other studies outside sal forests (Beeson 1941; Dennis 1967; Stoddard 1969; Jackson 1988, 2002).

At species level only two species, Greater Yellownape and Lesser Yellownape showed significant increase in borer infested stands, suggesting that these species could be important predators of the sal heartwood borer. Amongst resident species of woodpeckers, abundance of Greater Yellownape, Lesser Yellownape, Grey-headed Woodpecker, Himalayan Flameback (Fig. 11); Fulvous-breasted Woodpecker were more in pure sal stands as compared to mixed forest stands. On the other hand abundance of Streak-throated Woodpecker, Rufous Woodpecker (Fig. 17), Grey-capped Pygmy Woodpecker, Greater (Fig. 22) and Black-rumped Flameback (Fig. 7) had more abundance in mixed stands.
forest than in pure sal stands. Species preferring sal dominated stands should thus play a major role in checking the borer infestation as compared to the other species.

It was also determined that proximity of sites with each other played a significant role in determining species composition of sal forest in Dehradun valley than other factors i.e. borer

Fig. 17. Rufous Woodpecker *Micropterus brachyurus.*

Fig 18: Ordination of woodpecker sites in species space in Dehradun valley based on two most important components.

Fig. 19. Ordination of species in sites space in Dehradun valley based on two most important components.
This study was part of the fellowship -Dr. Salim Ali National Wildlife Fellowship Award 2001 under which this study was carried out, from June 2004 to March 2007. I thank the Wildlife Division, Ministry of Environment and Forests, Government of India for the grant of this fellowship. I also thank the Director General, ICFRE, Dehradun, Director, FRI, and Head, Entomology Division, FRI, Dehradun, for providing the necessary facilities to carry out the above study. Thanks are also due to H. B. Naithani for identification of plants, and to Dinesh Kumar and Raman Nautiyal for their help in statistical analysis.

References

Beeson, C. F. C., 1941. The ecology and control of the forest insects of India and neighboring countries. Dehradun: Vasant Press.

